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Fully coupled model versus rotating-wave approximation 
in the asymptotic time evolution of spin systems 

M A Desp6sito and E S Hernindez ~ ~ 

Departvnento de Fisib, Pacultad de Ciencias Exactas y Naturales, Universidad & Buenos Aires, 
1428 Buenos Aires. Argentina 

Received June 1994, in final form 21 October 1994 

Abstract. In the frame of the generalized master equation @ME) approach, an analysis of the 
asymptotic spin relaxation is made for different j values. The fully wupled (E) model and 
the rotating-wave approximation (RWA) for the system-reservoir coupling are considered and it 
is seen that they give rise to structurally different OM%. In particular. we examine the evolution 
of the diagonal and off-diagonal m V i x  elements of the density operator, the mcan values of 
the relevant observables and the equilibrium solution for both coupling models and. display their 
significant differences. Particularly the spin j = 1 case is examined. 

1. Introduction 

The GME approach [l] for describing the irreversible dynamics of a quantum macroscopic 
system that interacts with a heat reservoir has proven to he an essential tool for understanding 
not only the equilibration process but also the nature of the equilibrium state encountered. 
In particular, the possibility of reaching non-Gibbsian equilibria [2], a feature that appears 
to be related to the breakup of the weak-coupling approximation,  has been investigated. 
The most widespread ‘toy problems’ subjected to this analysis are the harmonic oscillator 
[3] and the single spin [4] in the Markovian limit. In this case, the asymptotic Gnm is of the 
@in-minus-loss form, which corresponds to a situation where only population probabilities 
of the spectrum of the evolving system are involved. 

The validity of the Markovian limit is already an important issue to keep in mind before 
attempting to employ the GME approach. It is frequently preferred in the literature due to 
its simplicity, and indeed it has been shown resorting to the time-convolutionless projection 
operator method [5] that in the non-Markovian situation, i.e. when memory effects in the 
reservoir cannot be disregarded within the time-scale of the motion, the GME can be cast 
into the same form as its Markovian version, with time-dependent transition rates. These 
ideas have been applied to investigate the possibility of non-exponential relaxation and the 
role of the long-lived reservoir correlations in the dynamics of a two-level system 161. More 
recently, the Markovian evolution in the presence of different kinds of coupling mechanisms 
and heat baths have been studied within essentially the same theoretical frame [7]. 

However, several questions remain to be investigated and among them, an important 
one is the assertion that in the vicinity of the equilibrium situation the density matrix of 
the system is purely diagonal [8]. Another question concerns the validity of the RWA as 
an approximation to the FC model. In this paper, we show through a specific example, 
consisting of a single spin system immersed into a heat bath, that such a statement may be 
not true and discuss the conditions under which this actually occurs. 

0305-4470/95/040775t12$l9~0 0 1995 IOP Publishing Ltd 115 
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This paper is organized in the following way. In section 2 the spin relaxation model is 
investigated; the corresponding GME is obtained and the evolution equation for the diagonal 
and off-diagonal density matrix elements are given. In particular, the j = i case is solved 
analytically in section 3 .  Section 4 contains an analysis of the equilibrium and dynamical 
properties of a system with spin j = 1. Finally, in section 5 we present our conclusions. 

2. The generalized quantum master equation for a spin system 

In this section we introduce and discuss a particular model in atomic physics, where one 
spin-or several non-interacting ones-subjected to a magnetic field, relax due to the 
coupling to a normal reservoir. This model applies as well to vibrational and optical 
spectroscopy [6] and to atomic two-level systems interacting with a radiation field, as 
described by the quasi-spin formalism 191. The interaction with the reservoir will induce 
transitions between the 2 j  + 1 angular momentum eigenstates l j m )  of the unperturbed 
Hamiltonian 

H s  = -BJz (2.1) 

which correspond to the different orientations of the spin j with respect to the magnetic 
field. 

In what follows we consider the system-plus-reservoir Hamiltonian 

H = Hs + HR + HSR (2.2) 

where HR is the isolated reservoir Hamiltonian. The interaction term is assumed to be of 
the generalized FC form [4, IO] 

HSR = a(J -  + J+)(R + Ri) (2.3) 

where a is a parameter that measures the average strength of the interaction, 3 = 
( J z ,  J+,  J - )  is the set of generators of an SU(2)  algebra, and the operators R and Rt belong 
to the operator space of the reservoir and contain infinite summations over all degrees of 
freedom in the environment. 

The dynamical behavior of the spin system can be computed from the knowledge of the 
reduced density, o(t) = TrRp(t), where p(t) is the full spin-plus-reservoir density operator 
that satisfies the Liouville equation 

(2.4) 

and TrR indicates tracing in +e Hilbert space with respect to the quantum numbers of the 
reservoir R. 

Using standard projection operator techniques, assuming the Bom approximation (valid 
in a weak coupling scheme) and taking the Markovian limit, the corresponding GME can be 
obtained. This equation is the same as equation (9) in [3] ,  which for the particular model 
of equations (2.1) to (2.3). and after some algebra, leads to the following law of motion 

where 

H,’= Hs+fiA+J-J+ +hA-J+J. 



Asymptotic time evolution of spin sysfems 777 

is the renormalized Hamiltonian that appears when we couple the system to the reservoir, 
and A and A' represent the collision kernels acting upon a. These kernels can be written 

A o  =-iW+(J-J+a -ZJ+aJ-+aJ-J+)-~W-(J+J-u  - ~ J - ~ J + + u J + J ' - )  (2.7) 

and 

A'a = -(iW+ + iA+)[J+, J+u] + ($W' - iA+)[J-, uJ-I 

as 

-(iW-+iA-)[J-, J-o]+($W- -iA-)[J+,aJ+l. (2.8) 
For the FC model E is just unity. In the RWA we exclude from the GME the 'anti- 

resonating' terms that correspond to the simultaneous creation or annihilation of system and 
bath excitations, discarding those terms that contain two J+ or J- operators. Therefore, as 
one can see from (2.7) and (2.8). E vanished in this case. We mention here that there exists 
another way to carry out the RWA 1101, namely consider HSR = .(J+Rt + J-R) instead of 
(2.3); In this case, the corresponding GME is (2.5) with E = 0 and with slightly different 
expressions for A* [7]. 

The real quantities W*, A* are respectively the downwards and upwards transition 
rates and the conservative corrections to the free-flow rate, defined as 

where @ J R i R ( f )  = (R+(r )R)  and @ J R R t ( t )  = (R(r )R+)  are the correlation functions of the 
heat bath operators. Here Rt(r )  and R ( r )  are computed in the non-interacting scheme for 
the bath. Taking into account that the Fourier transform of the reservoir correlation function 

(2.10) 

(2.11) 
with p = 1/T the inverse equilibrium temperature, one can demonstrate that the coefficients 
(2.9) can be written as 

and 

(2.12) 

(2.13) 

where P denotes Cauchy's principal value of the integral. In the above analysis, the only 
assumption regarding the reservoir is that the thermal averages (R tR t )  and ( R X )  vanish, a 
condition satisfied for the most usual models. 

We mention here that this problem can be invesigated as well beyond the weak-coupling 
approximation, since one can show that the coefficients can be written as expansions in 
the coupling parameter, whose first terms are the ones displayed above. In the non- 
Markovian case the evolution equation is identical to (2.5) with time-dependent coefficients; 
however, for times greater than the characteristic decaying ,time rR of the autocomelation 
function of the isolated reservoir-which may be strongly dependent on the temperature- 
the Markovian approximation is suitable. Hereafter, the evolution for times f >> ZR will he 
referred to as the asymptotic regime., 
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In what follows, we will discuss the characteristics of the motion of both the diagonal 
and off-diagonal matrix elements U".". The occupation probabilities um of the angular 
momentum eigenstates I j m )  evolve according to 

dt m -  
--U d -hzw+(c;um-l - Cm+1Um) +hzw-(c;+lum,l - CmUm) 2 

+h2& ( C m C m + l  [(W' + W - ) R m + l , m - l  +2(A' - A - ) Z ~ + I , ~ - I ]  
-Cm+lCm+z [W-Rm,m+z + 2A-Im.m+~] 
-CmCm-i [ W+Rm,,-z + 2A+Zm,m-z]} (2.14) 

where 
1 

1 

Rm." = R e h J  = + S , m )  (2.15a) 

(2.15b) I m , n  = W U m , n l =  z(um,n -U,,,) 

C, = h J j ( j  + 1) -m(m - 1). 

the real and imaginary part of the reduced density, and 

(2.16) 
The explicit expressions for the evolution equations of the matrix elements U,,,: = 

(jmluljn) are given in the appendix. 
We can appreciate that, while the RWA (i.e. & = 0) yields a master equation with the 

typical gain-minus-loss appearance, such a feature is no longer valid in the FC frame in 
view of the coupling between occupation numbers and off-diagonal transition amplitudes. 
After some algebraic steps, the latter can be seen to fulfill the set of equations 
d 
-Rm,,, = - [[E +hZ(A+ - A-)] (m - n) +??(A+ + A-)(m2 - n')} Im,. 
d t  

+RZW+[CmCnRm-~.n-~ - i(C;+, + C:+~)Rm,nl 

+fi W [Cm+lCn+~Rm+l,n+~ - 4CC; + C:)Rm,nI 

+$AZ& ( C ~ C ~ + I  [(W' + W - ) R ~ - I , ~ + I  -2(A+ - A - ) I ~ - I . ~ + I ]  
+Cm+lCn [(W' + w - ) R m + ~ , n - ~  + 2(A+ - A-)Z~+I .~ - I ]  
-CmCm-l [W+Rm-zn - 2A+Zm-z,.] 
-Cm+ICm+z [W-Rm+z.n - ~ A - L L + z , ~ ]  
-cnCn-~ [W+Rm,n-2 + 2A+1m,n-~] 

2 -  

-Cn+lCn+z [W-Rm,n+z + 2A-&"z]) (2.17) 
and 
d 
-Im," = {[E + R2(A+ - A-)] (m - n) + @(A+ + A-)(m2 - n')] Rm." 
df 

+nzw+[cmcnrm-I,n-I - ;(c;+~ + c,~+~)z~.,] 
+ h 2 ~ - [ ~ m + l ~ n + l ~ m + l . n + t  - ;(C; + c ? ) ~ n ]  

+;Az& {Cmcn+~ [(W' + w - ) I m - ~ , n + ~  +2(A' - A-)%-I.~+I] 

+Cm+lCn [(W' + W - ) I m + ~ , n - ~  - 2(A+ - A - ) R ~ + I . ~ - I ]  
- C m C m - I  [W+Im-2.n + 2A+Rm-~,n] 
-Cm+lCmtz  [W-lm+z.n + 2A-Rm+~,n] 
-CnCn-l [W+Zm,,-z - 2AfR&2] 

-Cn+lCn+2 [ W-lm.n+z - 2A-Rm.n+~]} . (2.18) 
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The spin j = $ has been investigated by several authors (see, for example, [6] for 
updated references) and explicit expressions can be written in the Markovian limit. The 
major results can be summarized as follows. With the renaming U+ = ui,;, U- = U+-'. 

R = Ri,-+. I = I;.-;, the GME makes room to two uncoupled differentid systems,~ namefy 

(2.194 

(2.19b) 

d 
dt 
d 
dr 

-u+ =fiZ(w+u- - v u + )  

-U- = h* (-w+u- + w-U+) 

and 
d 

d 

- - R = - ~ U ( I - E ) R - [ B + S ( ~ - E ) ] I  (2.204 
dt 

dr 
(2.20b) -I = - ~ u ( ~ + E ) I + [ B + S ( ~ + E ) ] R  

where U = hZ(W++ W-) and S = AZ(A' - A-). Hence, the evolution of the diagonal p q  
is independent of the coupling model, which is no longer true for higher j values as one 
can verify from (2.14). 

One easily sees that the manix in the linear system (2.19) possesses eigenvalues 0 and 
U, the solution for the probabilities being 

where we use the normalization condition U+ + U- = 1 and o( denotes the quotient 
a = W + / W - .  One can realize that the Markovian decay is of the exponential type 
regardless the coupling strenght. This is no longer true in the non-Markovian case [6]. 

The equilibrium solution of (2.21) is 

(2.22) 
1 

u*(m) = - 
1 +or*' 

which in the weak coupling limit is precisely the canonical distribution 

(2.23) 

in view of the detailed balance relationship o( = e-phB. 
On the other hand, the system (2.20) possesses the eigenvalues, 

h* = - ~ u ~ i J ( ~ + ~ ) * - - ( ~ u z + ~ z )  Z (2.24) 

which means 

(2.2%) 

(2.25b) 
We then recover the well known fact that the off-diagonal elements of the density matrix 

U ,  I ,  u-1,; undergo damped oscillations with a characteristic time twice as large as the 
damping for the occupation numbers, consequently we are facing a specific example where 
the usual statement [3,12] concerning the asymptotic diagonal form of the density matrix is 
not valid. Such an assertion holds under the FC and the RWA (except in the case of vanishing 
initial off-diagonal elements), a fact that imposes a limit on the use of the gain-minus-loss 
master equation (2.19) to describe the damping process to full extent. Furthermore, in the 

I . - i  
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saictly weak coupling limit where both w and S are much more smaller than B ,  one has 

We end this chapter with some comments concerning the evolution of the spin j .  
Noticingthatin the j = $case, onehas (Iz) = $+z(u+-u-), (J+) =iiu-i:;, (J - )  = R u L , - + ,  
we realize that (J,) =FIR and (Jy) = - E l .  The motion of (J,)  is thus independent 0% the 
motion of the polar components and given by 

M A  Desp6sito and E S HernMez 

A;wA x A& 

(2.26) 
. -  

which in the weak coupling limit displays the canonical equilibrium value (J,(oo)) = 
$tanh(+iB). 

The evolution of the averages (.Ix) and (J,) is given by the coupled equations 

(2 .27~)  

(2.276) 

which together with (2.26) constitute the vector Bloch equation and are similar to those 
obtained for a harmonic oscillator with frequency 00 and mass m linearly coupled to a 
reservoir [3] if one makes the replacement: ( J x ,  BJ,) -+ ( m e ,  P). U -+ (W+ - W-) ,  
S -+ (A++A-) and B -+ 00. This analogy and the linearity of (2.26) and (2.27) are only 
valid for a j = 1 spin system, while for higher spin values the corresponding equations are 
nonlinear ones (see equations (3.8) below). 

3. Application to j = 1 spin systems 

In this section we consider explicitly a spin j = 1 and discuss the results of a numerical 
study of the GME. FirsL we select for the Hermitian matrix p ,  the occupation probabilities 
U-1. UO, u1 and the real and imaginary parts of the off-diagonal elements u1.0, UO.-~, u1.-1. 

d 

d 

-(Jx) = - ~ W ( l - E ) ( J * ) + [ B + S ( l - E ) ] ( J y )  
dt 

,(J& = - [ B  + S(1 + &)I ( JJ  - $J(l + SCJ,) 

The GME (2.5) gives rise to two uncoupled differential sets, as follows 
d 
dt 
d 

-U] = -Z2 [W-UI - W+UO + &(W+Ri,-i + 2A+Zj,-i)] 

;iiuo = Z2 [w-q - (W+ + w-)uo + W + q ]  

+~T?E [(W' + W-)Rj.-i + 2(A+ - A-)fi.-i] 
d 
dt 
-U-I = 2h2 [W-uo - W'u-1 - E(W-RI.-I - 2A-Zl,-i)] 

(3.1~) 

(3.lb) 

(3.1~) 

(3.14 

(3 .k)  

( 3 . 2 ~ )  



+a2& [ 2 A - 4 , 0  + W-21.o + 2(A+ - A-)Ro,-i - (W+ + W-)Io,-l] . 
(3.24 

A look at (3 .1)  and (3.2) shows the general feature of the diagonal and off-diagonal 
matrix elements that evolve independently in the RWA. In such a case, one may compute 
the three eigenvalues of the evolution matrix for the occupation numbers in (3.1), being 

(3.3a) 
(3.3b) 

which coincide with those obtained in [4].  The eigenvalues for the transition amplitudes 
between levels m = 1 and -I are obtained from (3.14 and (3.le) and reads 

A; = -U & i2(B +6) .  (3.4) 
In the FC case one cannot analytically compute the eigenvalues of (3.1). However, up 

to second order in the coupling constant A the characteristic polynomials of these equations 
have the eigenvalues (3.3). and (3.4). In the same approximation, one can compute the four 
eigenvalues of (3.2), which are 

, 

(3 .54 

(3.5b) 

for the FC and RWA. Consequently, while the off-diagonal elements u1.-1 and ~ - 1 . 1  exhibit 
a characteristic time twice as large as the diagonal ones, the adjacent elements q . 0 ,  UOJ, 

U-1.0 and u0,-1 approximately relax with &e fastest rate 3v. 
In the previous section we have seen that the equilibrium solution for the j = 4 system 

is the canonical one either in~the FC or in the RWA frames, but this is not me in the present 
case. From equations (3.1) it is easy to check that in the RWA the stationary diagonal 
elements obey the distribution 

(3.6~) 
(3.6b) 

while the off-diagonal elements UI,-I,  u-j.1 vanish. Note that in the weak coupling limit the 
distribution (3.6) correspond to the canonical one. Nevertheless, in the FC case the situation 
is different. A straightforward calculation leads from (3.1) to the following stationary 
solution: 

Fc (3.7a) - U*I (1 - Ri,-i)  FC - RWA 

0 0  FC - - 0 0  NA(1 - RFC 1 . 4 )  + 4-1 FC (3.76) 
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Figure 1. Equilibrium distribution for the RWA (full 
curve) and FC model (broken c w e )  35 a function of 
the parameter exp(-pB).  The latter is displayed for 
x = B / y  = and @ = 2 x (short broken 
curve) and y. = 5 x (long broken curve). 

f i2[A+(8yA - ufwA) - A-(uFWA - ufwA)] 
RFC - , ,  (3.7c) 

].-I - B + fi2[A+(2.uFwA + ufwA + 3u:yA) - A-(3u,RWA + UfwA + 2U?yA)] 

I;!I = o  (3.76) 

where the deviation from the RWA distribution is proportional to R;p ,  which at least is of 
second order in the coupling strength contained in A*. Note that in the high temperature 
regime (OAB < l), R:-l + 0 and one recovers the RWA distribution. 

On the other hand, the determinant of the matrix (3.2) is non-vanishing for both models. 
Then, the remaining off-diagonal elements vanish at equilibrium. 

For the weak coupling limit case, in figure 1 the RWA (canonical) and FC equilibrium 
distributions are shown as functions of exp(-pAB). For the latter, the corresponding A* 
coefficients appearing in (3.7) were calculated for a harmonic oscillatory reservoir model 
with ohmic dissipation using a Lorentz-Drude cut-off [13]. 

We have depicted the FC equilibrium distribution for ‘two values of the parameter 
p = h2Kh2 while x = B / y  = The departure from thecanonical distribution increases 
as the parameter p/x grows and the temperature decreases. In particular, we verify that 
for p/x < 0.01 both distributions coincide. 

Since, in general, (3.1) and (3.2) are not analytically solvable, we have performed nn- 
merical integrations, considering different values of the system-plus-reservoir parameters in 
the case of the same reservoir utilized for compute the equilibrium solution. A diagonal ini- 
tial condition q j ( 0 )  = 6j, j6j , l  has been enforced in every case. Typical results display the 
following features: first. for high temperatures ( , R E  << l), oscillations are present in the FC 
calculations as opposed to the purely exponential relaxation predicted in the RWA. This can 
be appreciated in figure 2 where we show, for p = 2 x (i) the 
time evolution of the occupation numbers U*, U ,  and (ii) the off-diagonal components R I , - ~  
and I 1 , - l .  Notice that the remaining density matrix elements identically vanish at all times. 
The appearance of some smooth oscillations in the diagonal elements can be attributed to the 
fact that the current regime does not comply with the ‘weak coupling’ demands leading to 
exponential decay: indeed, for the selected parameters one obtains a ratio v / B  - 0.4. As the 
temperature is lowered-i.e. BhB increases-the above oscillations in the occupation num- 
ber disappear. In figures 3(a)  and (b), with , M E  = 1, we may observe, on the one hand the 
slight departure of the FC equilibrium distribution with respect to the RWA canonical one, and 

and x = phB = 
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0.15 

( b )  

Figure 2 The time evolution of (a) the occupation numbers pk, ,% and (b) the off-diagonals 
components R I . - ,  and I ] , - [  for the FC (full curve) and RWA (broken curve) cases displayed for 
@ = 2  x 10-5 andX = p k ~  = 1w4. 

-0.05 4 I 
O 2 4 ’ -  6 

ut 

Figure 3. As for figure 2 for phB = 1 .  

on the other, the occurrence of a non-vanishing equilibrium value of RI.-I ,  which is reached 
through a high-frequency motion provoked by the large imaginary part of the rate in (3.4). 

Secondly, we have verified that as the parameter x increases, the FC and RWA evolutions 
resemble each other more closely. For f i / x  c lo-’ the diagonal matrix elements 
are identical within the current drawing scale, while the amplitude of the off-diagonal 
components RI,-[ and 11,-1 are significantly lowered with respect to the cases illustrated in 
figures 2 and 3. 

In the j = 1 case one can easily verify that 

(3.8~) 
(3.8b) 

( 3 . 8 ~ )  
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from which we realize that the motion of { J x )  and (Jy) is independent of the remaining 
quantities as a consequence of the fact that (3.1) and (3.2) are uncoupled. Specially, if the 
off-diagonal elements q . 0 ,  uo.-, initially vanished, ( J x )  and { J y )  remain identical to zero 
along the evolution. 

In figures 4 and 5 we show, under labels (a)-@), respectively, the quantities {JT), (J:), 
(J:) and (J:). In turn, these pictures correspond to the same parameter values as figures 2 
and 3. Their major features are (i) the FC oscillations in (1,”) are smoothed away as ghB 
is increased; (ii) the Fc frequency of {J,”) and (J,”) becomes much higher, the lowest the 
temperature; (iii) for the highest temperatures, the asymptotic values of all the quantities 
are the same in the FC and RWA cases and (iv) significant differences in the equilibrium 
situation show up at low temperatures. In particular, in the latter condition one encounters 

0.4 
4 ut 

Figure 4. Time evolution of (a )  (&), (b) ( J : ) ,  (c )  (J:) and (d )  (3:) for the the FC (full curve), 
RWA (broken curve) and the same parameters values of figure 2. 
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Figure 5. As for figure 4 for the same parameters values of figure 3 

that (J;)= 
as the ratio p/x becomes smaller. 

(J,')RwA and (J;)Fc < (J;)RwA. However, these~differences are washed out 

4. Conclusions 

In this work we have examined the approach to equilibrium of a spin- j system irreversibly 
coupled to a heat reservoir, in the frame of the Markovian GME. The very different relaxation 
dynamics that may show up as one selects either the FC model or the RWA, has been examined 
in two definite cases. While the spin-; system can be solved analytically, the spin-I case 
demands a numerical approach as carried down in this paper. This procedure allowed us to 
demonstrate, on the one hand.~that non-Gibbsian or non-canonical equilibrium distributions 
may appear, and on the other, that off-diagonal elements of the density matrix of the relaxing 
system may persist over very long times. 
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Appendix. 

The evolution of the matrix elements u, , ,~  corresponding to a spin system can be evaluated 
projecting the corresponding GME in the I jm) basis and using that 

(A.la) 
(A.lb) 

With this in mind, from (2.5)-(2.8) one can easily obtain that 

um.,=i{[B+R2(A+- A-)](m-n)+Z2(A++ A-)(mZ-n2)]umm,n 
+fi2W+[CmCnum-I,n-1 - +cc:+~ + ~i+i)um,n~ 

(A.2) 2 -  +fi W ICm+iCn+lum+i,n+1 - i(C: + Ci)%nl+ ( jm lA 'd j4  
where the last term is a conhibution only for the FC case and reads 

(jmlA'uljn) = $'?E { Cm+lCn [(W' + W-) - i2(A+ - A-)] um+l,"-l 

+CmC,+l [(W' + W-) + i2(A+ - A-)]u,,,-I,~+I 
-CmCm-l (W' + i2A') u,,-z.~ - Cm+lCm+z (W- + i2A-) U"+Z.~ 

-C,C,-, (W' - i2A') um,,-2 - C,+lC,,+2 (W- - iZA-) U ~ , ~ + * ]  . (A.3) 
Finally, from (A.lb), (A.3) and (2.15) one can compute the expressions (2.17) and (2.18) 

for the real and imaginary part of the non diagonal mahix elements um,". 
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